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STUDY OF EFFECTS OF UNCERTAINTIES ON COMET

AND ASTEROID ENCOUNTER AND CONTACT

GUIDANCE REQUIREMENTS

NAS8-27664

PROJECT SUMMARY

At the start of our work in June 1971, three for input to the guidance algorithm. Expenditures
principal tasks were assigned. Slightly restated, on the contract were low enough so that in June,
these tasks were: 1972, a no-cost extension of the work to September,

1973, was possible. At this time the changes in
(i) Develop a deterministic algorithm for objective were formalized and principal tasks were

guidance to rendezvous with comets and asteroids restated to include the navigation work (and elim-
that can handle expected large target ephemeris inate the contact-rendezvous and harpoon investiga-
errors. tion).

(ii) Define the problem of determination of In September, 1973, delays caused by installa-
rotational state of a tumbling asteroid or cometary tion of a new computing machine at the University
nucleus and develop possible schemes for this prevented generation of final data. The contract
determination. completion date was again extended, at no cost,

to December 15, 1973, to allow time for this data
(iii) Investigate possible contact rendezvous generation and report preparation,

schemes including the "harpoon" technique.
The final report of our work is presented in

During the first year, a detailed investigation two volumes:
of a rendezvous guidance technique based on
"encounter theory" was conducted. The definition Part I. Guidance and Navigation Studies
and formulation of the tumbling problem was made
and several possible algorithms phrased. A first Part II. Tumbling Problem Studies
investigation of the harpoon problem was conducted
and frequencies and acceleration levels identified. Each of these volumes presents the technical

details of the analyses conducted, the principal
Early in the second year work, a successful conclusions made, and listing of the computer

deterministic rendezvous guidance algorithm based programs employed, including descriptions of the
on optimal control theory was developed. The operation of the programs. Technical abstracts of
algorithm was considered sufficiently important the work are included in each volume. In Part I,
that, with agreement of NASA, more emphasis was the body of the report reproduces a paper prepared
placed on the rendezvous investigation. To for the AIAA 10th Electric Propulsion Conference
accommodate this work, the harpoon study was set entitled "Solar Electric Propulsion for Terminal
aside. An effort was initiated on the rendezvous Flight to Rendezvous with Comets and Asteroids."
navigation problem wherein measurements are made (AIAA Paper No. 73-1062). The title was changed
and statistically processed onboard the spacecraft for inclusion in this report and a few typograph-
to provide the relative state information required ical errors were corrected.
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STUDY OF EFFECTS OF UNCERTAINTIES ON COMET AND
ASTEROID ENCOUNTER AND CONTACT

GUIDANCE REQUIREMENTS

PART II. TUMBLING PROBLEM STUDIES

Abstract motion of the body's center of mass with respect to

the center of mass of a nonrotating, observing

The problem of determining the rotational motion spacecraft. Such motion can be described exactly

of a tumbling celestial body of the asteroid type in mathematical terms and the motion determination

using spacecraft-acquired data is addressed. The problem is reduced to the determination of the

rotational motion of the body is modeled by free- "constants of the motion" which are the arbitrary

Eulerian motion of a triaxial, rigid body and its constants obtained in integrating the equations of

translational motion with respect to a nonrotating, motion of the system.

observing spacecraft, which is not thrusting, is

assumed to be uniform during the time observations Since the type of motion to be considered cannot

are made. The mathematical details which form the be easily simulated physically, the mathematical

basis for a digital simulation of the motion and model of the motion is useful not only in deriving

observations are presented. Two algorithms for the determination algorithms, but also in simulat-

determining the motion from observations for the ing the motion digitally to check the performance

special case of uniform rotational motion are of the algorithms. Such a simulation capability

given. Results of studies of the performance of was developed and utilized in this study and is

the algorithms using ideal data and "non-ideal" discussed in the third section of this report.

data are discussed. The "non-ideal" data is

generated by inducing initial conditions which The form of an algorithm for determining the

cause the body to "wobble" in general free- constants of the motion depends, to a large degree,

Eulerian motion. One algorithm performs satisfac- on the type of observational data available. In

torily when the rotational motion of the body is the fourth section of this document, two algorithms

truly uniform, but, in general, fails to determine for determining these constants for the special

realistic values of the constants which are deter- case of uniform rotational motion (which will

mined when the rotational motion is not uniform. "probably" be the type of motion actually encoun-

The other algorithm does not perform well. tered) are described. The first algorithm,DUMRA

(Determination of the Uniform Motion using Range

I. Introduction and Angles), utilizes position data for three

particular points on the surface of the target body

Future missions to the asteroid belt or a comet at three instants of time. This data could be ac-

using autonomous and/or semi-autonomous spacecraft quired by using the combination of (1) a scanning

of the CARD (Comet and Asteroid Rendezvous and radar from which range and angles for many points

Docking) type will foreseeably require the space- on the body could be obtained, (2) a television

craft to land on, or "dock" with, the tumbling camera, and (3) an earthbound observer. The

target body. The successful completion of such a observer would be used to identify the same three

task will depend to a large extent on the avail- points on the body at the three instants of time

able knowledge concerning the target's rotational and select the data for these points from among all

motion and its translational motion relative to the that acquired (using, for example, a grided CRT

rendezvous spacecraft. Such knowledge, if not display and a light pen).

available a priori, must be determined in some

manner using observations of the motion of the tar- The second algorithm utilizes simpler data. The

get body made by sensors onboard the spacecraft. data is range and range-rate data, also acquired

Thus, methods for determining the rotational and via radar, for one specific point on the body at

relative translational motions of the target need six instants of time, again with the aid of an

to be developed. The development of such methods, observer to identify the point.

or algorithms, is the subject of this report.
The performance of the algorithms was tested, as

A prerequisite of any motion'determination al- indicated previously, by simulating the motion of

gorithm, such as, for example, a satellite orbit the body and from this motion determining the

determination algorithm, is the formulation of a observations required for the algorithms. The

suitable mathematical model for the motion which is section following the description of the algorithms

to be determined. That is, the motion to be is devoted to a discussion of these performance

studied must be defined in physical terms and then studies.

described mathematically. The motion of interest

here is that embodied in what we call "the tumbling Conclusions drawn from the work conducted are

problem." The definition of this problem is given presented at the close of the report and an

the following section. Stated briefly, the motion Appendix containing information on the computer

consists of free-Eulerian motion of the target body programs written and used during the study is also

about its center of mass and uniform translational included.

1



II. Tumbling Problem Definition the body needed to predict its relative

position and its orientation at any time

A prerequisite to the development of algorithms 
in the future.

for determining the rotational state of a tumbling

body, such as an asteroid, is the selection of This is the problem we have addressed in this

suitable mathematical models for the body and its study. For the most part, however, it has been

motion. Since the type of body of interest is an simplified by assuming uniform rotation as well as

asteroid or a comet nucleus, it is reasonable to uniform relative translation. In the next section

assume that the body is a rigid one. Also, using we consider the problem of simulating the observ-

available data(1) on the shape of asteroids, a ations which a spacecraft might make.

triaxial, homogeneous, ellipsoidal, rigid body was

selected as the physical model for the tumbling

body. Of course, it is not suggested that any III. Simulation of Observations

asteroid is actually perfectly homogeneous, nor

that they all are ellipsoidal, but the shape Although the algorithms for determining the

appears reasonable and the torque-free rotational tumbling body motion which are described in the

dynamics of any rigid body can be taken as those of next section are predicated on the assumptions of

a body with a triaxial inertia ellipsoid. Our uniform translational and uniform rotational

physical ellipsoid is the reciprocal of the cor- motions, simulation capability to handle nonuniform,

responding inertia ellipsoid and the lengths of its free-Eulerian motion of the triaxial body was de-

axes are denoted by a, b, and c where a > b > c. veloped. Such capability may be useful in future

studies and may also be used, as it was here, to

On the basis of observations of fluctuations of study the effects of small variations in the rota-

of light reflected by asteroids, astronomers (2) tional motion on the uniform motion algorithms'

have concluded that they rotate uniformly, or at performance. Details of how the observations of

least almost uniformly, about their centers of mass. points on the surface of the ellipsoidal model

Furthermore, the well-known fact that dissipation are generated using a FORTRAN subroutine, STATE

of rotational kinetic energy (internally, or 
(see Appendix for listing) are given in what

through external means such as meteor impacts, with 
follows.

no significant change in rotational angular momen-

tum will cause a triaxial body to ultimately rotate Physical Model

uniformly about its axis of maximum moment of

inertia leads us to assume uniform, or almost uni- The tumbling body model discussed in the pre-

form, rotational motion of the tumbling body about 
vious section is depicted in Figure 1. As stated,

its axis of maximum moment of inertia. To allow the model is a triaxial, rigid, homogeneous

for nonuniform motion, we have adopted a free- ellipsoidwith axes of length a, b and c (a>b>c)

Eulerian dynamical model for the tumbling motion;

that is, the rotational motion is assumed to be

torque-free during the time of observation.

The relative motion of the spacecraft and the

tumbling body centers of mass may be very nonuni-

form during the use of high thrust chemical systems.

However, we assume that during the time that obser-

vations of the tumbling body are made the space- C

craft's high thrust system will not be operating. X

Of course, relative accelerations of the tumbling

body and the spacecraft may still occur due to

(1) the body's gravitational attraction, (2) the

use of the spacecraft's low thrust system, and X

(3) the gravity-gradient effect of the sun's

gravitational field. However, by assuming a sta- 1 R

tion keeping or a steady fly-by mode of operation

for the spacecraft, the relative acceleration

caused by the low thrust system should be small

enough to be neglected over a period of time of

several minutes and the same should be true of S

the acceleration due to the body's gravitational

attraction and also that due to the sun. Hence, it

is assumed that the relative motion is uniform.

The tumbling problem, as we have defined it,

may thus be stated as follows:

Using observations of the motion of a free, YS

homogeneous, triaxial, rigid ellipsoid made

from a reference point which is moving uni-

formly relative to the ellipsoid's center

of mass, determine the motion of the ellip- Fig. i. Tumbling Problem Coetry

soid; i.e., determine the constants of 
the

motion and the physical characteristics of

2



so that the moment of inertia about the z-axis as shown in Figure 2. The orientation of the

(see Figure 1) is maximum. The moments of inertia CxHYHzH system is defined by the angles PH and OH.
about the axes x, y, and z are denoted by A, B, Finally, let the Cxyz system, shown in Figure 2, be

and C, respectively, and, as is obvious, C > B > A, a principal, body-fixed coordinate system for the

in general.t For a homogeneous, triaxial ellip- ellipsoid. The orientation of the Cxyz system with

soid we have, respect to the CxHYHz H is defined by the set of

Eulerian angles {i, e, 0}.

A = (m/5)(b 2 + c 2 )
The rotational motion of the ellipsoid is

B = (m/5)(a
2 

+ c
2
) (1) governed by Euler's equations for a free triaxial

C = (m/5)(a
2 

+ b
2
) , rigid body, which may be written in the forms,

where m is the mass of the ellipsoid. As we shall

see, the mass of the ellipsoid does not affect its Ax + (C-B) w z = 0

rotational motion as long as there are no external

torques. Be + (A-C) w w = 0 (2)
y zx

Rotational Motion
C; + (B-A) w = 0,z xy

Let SxsYsZ s be an orthogonal, dextral, coordi-

nate system which has its origin, S, at the center where wx, wy and wz are the x-, y- and z-components,
respectively, of w, the angular velocity of the

of mass of the spacecraft and which is nonrotating. ellipsoid.

Let CXYZ be a similar system which has its origin
Since Eqs. (2) are homogeneous, we can and shall

at C, the center of mass of the tumbling body and divide each of them by a constant factor. In

which is aligned with the Sx y z system. Also, addition, we shall introduce a new independent

ss variable,
let CXHYHZH denote a similar system which has its

zH-axis aligned with the constant rotational T = z (3)

angular momentum vector, H, of the tumbling body
where wzo is the value of wz at t = 0. Letting

Y ()' = d()/dT, we may then rewrite Eqs. (2) in the

dimensionless forms,

XH h' + (1-02) Xyz = 0

H 
y

X y + (a -1) Ax = o (4)

Xz + (o2-1 ) X = 0

where x=x az , y= /Wz ' 1z=/Wzz 1
= 

A/C
o o o

and a2 = B/C.

NEquations (4) have the first integrals,

H h
2 

= 2 2 + 0 2 2 + X 2 = constant (5)

X Z 
l x 2y zX Z Z Y and

x a 
= (c 1 x2 + 0 2 2 + 2) = constant, (6)

where h = IHI/C 2 w 2 and a is twice the rotational
z0

kinetic energy of the body divided by C
2  

Z 2. The
z0

integrals (5) and (6) may be used to obtain the

following solution(
3
) to Eqs. (4):

x = p cn u
ZZ x

z

= q sn u (7)

Fig. 2. Coordinate Systems. Xz 
= 

r dn u ,

3



where where A = 1 - (k2 Xyo2 /q
2 ) sn2  t. For use in

p = {(a - h 2 )/[o (l-0 )]
2  (8) Eqs. (16), p, q, r, A and k are to be obtained by

P 1 evaluating Eqs. (8)-(10), (12) and (13) at t=0

q = (a - h2 )/[2( (1-2)]} (9) using Eqs. (5) and (6).

r = {(h2 - a a)/(l-l)]} (10) The angles 6 and $ may be expressed as functions

1r of time by using the fact that H may be written as

u = AT - v, v = constant, (11)
H =As i +Byj +Co z , (18)

X = {(02 - al)(a-h2)/[(1-o2)(h2-ola)]} (12) x
or as

and the functions cn u, sn u and dn u are Jacobian H = - H sin e i + H sin O cos € j +

elliptic functions of modulus

H cos * cos 0 k, (19)

k = {[(o - 1 )(a-h2)]/[(l-o2)(h2-la)]} (13)
where {f, , i} is a set of unit vectors associated

with the Cxyz system and H = IHI. From Eqs. (18)

Note that, since 01 and 02 do not contain the mass, and (19) and previous definitions, it follows that

m, of the body, the rotational motion of the body
is not affected by the value of m, but is affected sin 6 = - ol x/h (20)
by the distribution of the mass.

and

To allow for arbitrary initial conditions on tan € = o 2  /Az . (21)

Ax and Ay (initially Az = 1, of course), the

elliptic functions are rewritten in the forms,(
4 )

Expressing the angle J as a function of time is
a more difficult task. Although it is well known(

3 )

cn u = cn (At-v) = cn At cn v + that i may be expressed as a linear function of

time plus a periodic function of time composed of

sn At sn v dn At dn v)/A Jacobi's Theta functions, this was not done. In-

stead, i is calculated by integrating the follow-

sn u = sn (At-v) = (sn At cn v dn v - ing differential equation:
(14)

sn v en At dn At)/A .' = h [1 +(o2-1) sin 2 #]. (22)

an u = an (Xt-v) = (dn Xt dn j + Note that if the rotational motion is uniform,

k 2 sn At cn At sn v cn v)/A , € = 0 and I = 0+h. In the simulation program, a
check is made to determine if the motion is uniform,
and if so, the integration of Eq. (22) is by-passed

where and the orientation at the desired "time," T, is

computed using 6 =0 = 0 and ' = o + hr.

The transformation from a nonrotating set of
unit vectors {f, j, K} directed along the positive

Since at t = 0, cn u = cn v, sn u = - sn v and xs-, Ys- and zs-axes, respectively, to the set of

dn u = dn v, we have from Eqs. (7) unit vectors {{,j,f} is

(P 3 2) = (T 3 R)T AT, (23)
cn v = x /p ( (23)

o where a superscript T denotes the transpose and

sn v = A /q (16)
0  1 0 0 cO 0 -so c s 0

dn v = 1/r . c
= 0 c s 0 1 0 -s* c* 0

Thus, the solutions for Ax, Ay and Xz may be ex- -s cO sO 0 cO 0 0 1

pressed as

A = (A At - A p/(qr) dn At sn At)/A cOH 0 -seH ciPH s H 0 (24)

hx = (bxo Cn It - lyo p/(qr)

Xy = (Ax q/(pr) sn At + A cn At dn At)/A (17) x 0 1 0 s Hc H
Sos H  0 coH 0 0 1

z = (dn At - [A X k 2 /(pq)] sn it cn At)/A

In Eq. (24), c denotes the cosine and s denotes the
sine of the angle prefixed by such letter. Since

'H and OH are constant angles which specify the
orientation of H, they constitute two of the con-

4



stants of the motion. The other constantsTare The vectors rj amd pj may be expressed in the

al1 I2' Xx ' Y , A z and o . Thus, we see that vector forms,
xo yo o

eight constants are needed to completely specify r = xj i + yj j + z. k (27)
the free-Eulerian rotational motion of a particular

body. and

Translational Motion j 
=  +  

J (28)

The model adopted for the relative motion of the so that in matrix form,

centers of mass of the body and the spacecraft is
exceedingly simple. We assume that this motion is X x x
uniform so that the vector R from the point S to C

is given by = Y + t + A Y (29)

R = R + Vt , (25) z z

where and

R = X 1 + Y j + Z° K = constant vector

and A y (30)
V = II + J + K = constant vector, '

are the relative position and velocity vectors at jJ z

t = 0. The constant components of R and V are
six constants which determine the r fative trans- where

lational motion.

Motion of a Point on the Body z y

=W -A (31)
The determination algorithms discussed in the z

next section are predicated on the use of observa-
tions of the movements of specific points on the

surface of the tumbling body. If we let rj be a
vector from C to a point, Pj, on the surface of the Equations (29) and (31) are used in subroutine,

body and pj be a vector from S to Pj (see Figure 1) STATE, to generate the relative position, pj,

then we have, very simply, and relative velocity, 6j, of three points, Pj,

j=1,2,3, on the surface of the ellipsoid. The

range, pj, and range-rate, Pj, for each point are

-j R + j (26) also determined from

p j (j2 + nj2 + 2)2 (32)

and

j -j j /PJ' (33)

respectively.

As stated above, the points Pj are "on the

surface" of the ellipsoid. This constraint is
satisfied by allowing one to input only the x-

X ----------- ---- and y-components of rj and determining the z-
C1 component from

S= c (1 - x /a2 - y/b2) , (34)

where a, b and c are to be provided and xj and yj
are constrained by the relations x < a, yj < b,
1 - xj

2
/a

2 
- yj

2
/b

2 
> 0. Note thai we have assumed

that the points are all "on the bottom" (i.e.,
z > 0) of the ellipsoid.

Z Observability of a Point on the Ellipsoid

Clearly, a point Pj, on the ellipsoid will not,
in general, be visible from a point S at all

Fig. 3. Geometry for Visibility Determination. times. To determine whether or not P is visible,
it is sufficient to find the two (in general)
intersections of the line of sight,Lj, which is
colinear with pj, with the ellipsoid (see Figure 3)

t Actually, 01 and 02 are physical parameters.

5



and determine if the point, Pj, is the near point Using the coordinates (x!, y*, z*) the distance,

of intersection. Such a determination is made in p, may be computed and if > p, the point, P,
subroutines STATE and VISIB in the following manner. if j

is visible, but if pj > P, the point, Pj, is on

The components of the vector, pj, in the {i,,k) the "backside" of the ellipsoid and cannot be

basis are determined using observed.

A In summary, the motions of three points on the

5j ellipsoid are simulated digitally in subroutine,
STATE, which utilizes Eqs. (29) and (30) (and all

A A equations needed to evaluate those equations).

= A j (35) Values of a, b and c, as well as Ro, V, e6H' 4H'

A = (Xx i + X j 
+ 

k), xj and yj, j=1,2,3,
So o o

must be supplied to STATE by the user. As the

ellipsoid rotates and translates, the visibility

and the direction cosines, PA' mA and nA , of Lj of the chosen points is checked by using Eqs. (39),

j j (32) and (29). If the point, Pj, is not visible,

are determined using the equations, a message to that effect is printed, but, since

subroutine, STATE, was used only to check out the

jA/pj motion determination algorithms, the data request-

A 
=  ed by the algorithms is still supplied. In future

simulation work, however, the visibility provision

A should be used to make the simulation more real-

m ( istic by "cutting off" data from an unobservable

point.

A

V. Algorithms for the Case of Uniform Motion

T coit , an f the "other"The coordinates xj, yj and zj of the "other" Because asteroids and cometary nuclei may

point of intersection of Lj with the ellipsoid must logically be expected to be rotating uniformly and

satisty the equations, because the exact solution to the free-Eulerian

motion problem is much more complex if the motion

(x* - x )/ = (y - y )/m (z* - z )/nj (37) is not uniform, algorithms for determining the

j j A . y j j/j eleven constants, H, H, a = l
i , X, Y, Z, Xo

Yo Zo, xl and yl , were developed. 
For the uniform

motion case, H and eH determine the orientation of

1 = (x*/a)
2 

+ (y /b)
2 
+ (z,/c)

2
. (38) the target's angular velocity vector w, which is,

j j of course, colinear with its rotational angular

The solution of Eqs. (37) and (38) is momentum vector, H, and w is the magnitude of the
angular velocity.- The constants X, Y, Z, Xo, Yo
and Zo determine the translational motion of a

x* 2 -/C - x point, C, on the spin axis of the target and xl and
c2/cl 1 y 1 locate a point, Pl, with respect to C. The z-

coordinate of Pl is not determined, since the loca-

Y = (mAj/Aj)(x* - x ) + yj (39) tion of the center of mass of the target on the z-
Yj A axis cannot be found if it does not "wobble."

z (nj / )(x* - x ) + z That is, if the motion is uniform, all points on

z A A+ Zj, the axis of rotation move in the same manner as
the center of mass and hence are not distinguish-

where able from it. This fact is taken into account by

setting za = 0. Furthermore, since the orientation

S= A 
2 /a 2 

+ m + + nA
2
/

2  
(40) of the Cxyz system in the asteroid is immaterial if

j j j the motion is uniform, Jo can be set equal to zero

c2 = (c1 - LA
2
/a

2
) xj - m A j/b

2 
- n A z /c also.

Two distinct algorithms were developed for the
uniform motion case. The first is called DUMRA

A 0 the second and third of (Determination of the Uniform Motion using Range

qs. (39) appea to be singular. This singularity and Angles). This algorithm is presently set up
is, however, only "apparent," since to accept position vectors, which it is assumed

may be obtained from range-and-angle data for three

lim (x -x ) -2[y (mA /b
2
) + zj(n A /c

2
)] specific points on the target's surface. The

S 0 - -- A 1  second algorithm is called DUMRRR (Determination
jA [mA

2
/b +nA

2
/c 2

] of the Uniform Motion using Range and Range-Rate).
j j (41) This algorithm utilizes range and range-rate data

A quadratic equation in x* may be obtained. One root of this equation is obviously xj, so that, the
first of Eqs. (39) may be obtained by factoring the quadratic.
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for one point on the target's surface along with and t2 has been arbitrarily set equal to zero.

estimates of the eleven constants to be determined Equation (48) may be solved for xl and yl, viz.,

and iteratively produces more exact values for the
constants. More detailed descriptions of these l [2(cwAt - 1)]-1 0
algorithms are given in the remainder of this sec- A [[
tion. Y1 0 [2(crAt - 1)]

-1 A2=3 
a p-

Algorithm DUMRA (54)

The solution procedure utilizing position data
is as follows: 6. Compute R(t 2 ) -R . This may be done using

the equation

1. Obtain position vectors, Pj, j=1,2,3, for
three distinct,non-colinear points, Pj, J=1,2,3, T T 55
on the surface of the target at three times, tj, R = P l(t) (55)
j=1,2,3, such that t2 - t i = t 3 - t 2 = At.

2. Compute approximate velocity vectors for
each point at time, t2 , using 7. Compute Vo from the equation,

Sj(t 2 ) = [Pj(t 3 ) -_(t 1 )]/26t, j=1,2,3. (42) V = [P(txl) R T T At l) IlY

3. Compute the angular velocity of the body, , -o - -o 3 1
using(5)

S3(t2 t2)] x [P 2 (t 2) - ~1t 2)]- 2 (43) The requisite constants are given by Eqs.
P3 (t 2 )- ( 2 )] - [P2(t2) - 1 t 2 )] (43), (45), (46), (54), (55) and (56). Note that

to extract the coordinates xl and Yl, it was
so that in matrix form, necessary to allow for the curvature of the motion

a = [ i u 2 u3
]
T (4) of Pl due to rotation.

Algorithm DUMRRR
4. Compute H and H using

The solution procedure based on the use of range

S= tan-' (W 2//) (45) and range-rate data is an iterative one. The main
steps are as follows:

and
1. Guess values for the eleven unknowns, H'

H = tan
-1 

( Cos2eH/cos) , (46) eHs W, Xo Yo Zo, X, Y, x1 and yl.

where 2. Set * = 0 at t = 0 and compute, for six

cos H = H 3 /Im . (47) times tj > 0,

5. Compute xl and y1. First, compute Pl = 
( R  

R + 2 R
T  r + r 1T le (57)

ip = l(t3) - 2 l(t2) + Pl(tl) (48) and

T T T T T
in the matrix form ( p ) = (VR + RT er' + A r

ST (58)

Al 3  T( t3 ) - 2 I + ATtl) Y1  ' (49) where the subscript e denotes an estimated value,

0

where cut sut 0 = 0 (59)

A1 (t) = t ct 0 (50) 0 0

and A = AT _TT

I = 3 x 3 identity matrix, (51)
3. Use the observations Pl 

= 
1 IP1 and pl 1 /P1

ceH 0 -seH- at the same times, tj, and the estimated values to
obtain

A2 = 0 1 0 (52) l

LseH 0 ceH_ Az = . le (60)

c H s .H  0 l

A= sH cH 0 (53) at each time, tj, j=l,2,...,6.

S 0 1
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4. Evaluate the partial derivative matrix, and compute Ax from the equation,

SDP 1 Ax = P HT , (67)

H (t)= I -- I  (61)
= - at successive instants of time, correcting the

estimate,xe,each time. This method of solution was

ax attempted initially when there were still errors in

whereT the program. Since it appeared that the matrix

where x H H X Y Z X Y Z ) , at each H TH was ill-conditioned, the pseudo-inverse method

time, tj j=l,2,.. ,6. was abandoned in favor of the more cumbersome, but

more trustworthy, "batch-processor" method outlined

5. Form the augmented matrices, 
here.

= (tI)  VI. Performance of the Algorithms

2 The algorithms, DUMRA and DUMRRR, were tested

B ---- (62) using the simulation capability provided by sub-

routine, STATE, (and subsidiary subroutines). They

were not exercised as much as was desired because

H (t5) of time constraints, but whether they operate satis-

--- factorily in the uniform motion cases considered is

IT evident from the results discussed in this section.

x t=t Nonuniform motion due to target body "wobble" is

another matter and is also discussed infra.

and To test the performance of the algorithms,

[AzT(t )tAz (t .. Az t ):(1P ) 
]T  values of the physical parameters a, b and c

C2- l. 5 1 e t=t6 thought to be .typical of an asteroid were chosen.

e These values are given in Table 1 along with
(63) values of the nine constants of the motion and the

6. Invert B and compute

(64) TABLE 1
Ax = -1 C Cf PHYSICAL PARAMETERS AND CONSTANTS OF THE MOTION

where Cf is a convergence factor (Cf < 1) which may a = 1.75 x 104 m w = 3.31 x 10
-4 rad/sec

be varied to improve convergence. b = 8.0 x 103 m 6H = 200

7. Find a new estimate of x using c = 3.5 x 10 m H =100

i+l i (65)

-e -e x- X = - 1.0 x 106 m u = 1.0 m/sec

8. Check the norm, I C I , to see if it is suf- .

ficiently small. If it is, go to 10. Yo =0.0 v .5m/sec

9. To decrease I CI, compute a new partial Zo = 0.0 w = .5 m/sec

derivative matrix B and a new matrix C using the

current estimates and repeat steps 6 Through 8. 
= - 1.75 m 0.0

10. The elements of xe are the desired x2 = - 1.0 x 04 m Y2 = 6.5652 x 04 m

values of the constants. x = - 1.0 x 10 m Y3 = 0.0

The matrix B in Eq. (62) is such that some of it

its terms are much larger than others. Therefore,

to increase numerical accuracy in obtaining the

inverse of B, dimensionless variables are used in x- and y-coordinates of three points on the body.

the computer subroutine DERIV in which the matrices The z-coordinates of these points are determined

H(t.) are computed. in STATE as indicated previously. The values of

= 3the constants which are listed constitute only one

It should be noted that the method of solution of several .sets of values used during the check-

used in this algorithm is of the "'batch processor" out process and hence are "typical."

type. Another method for solving such non-linear

observation equations as Eqs. (57) and (58) is to The first step in the check-out of each of the

use the pseudo-inverse, two algorithms was to test its accuracy under

ideal conditions represented by perfectly uniform

T 1 motion. The.performance of each algorithm when

D = (HT H)-  (66) the simulated motion was not uniform was then

tested.
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For perfectly uniform motion, algorithm, DUMRA, rithm produced erroneous results. Failure of the

reproduced the input in most cases to four signif- algorithm for large nutation angles (angle e) was

icant figures and always attained percent errors expected, but even small angles unexpectedly caused

less than 1 percent. Theoretically, the only error a great deal of trouble. Because, small nutation
which is present (apart from basic computational angles may actually be encountered, the algorithm

errors, that is, is that due to the approximate should be modified to allow for such an eventuality.
calculation of the velocity of each of the points This could be done by using the angular velocity
from the position data. This error does not appear determination portion of the algorithm with a small

sufficiently large to be a problem if the increment At to obtain five values of w. An approximate

in time, At, is small compared to the rotational solution which allows for small nutation angles (see

period of the target. In the cases examined here, Ref. 5, Appendix D) could then be used to obtain

a = 3.31 x 10
-
4 rad/sec, so that the period of "x o , y, z 

0
j and 02. Minor changes in DUMRA

rotation is 1.9 x 104 sec = 5.28 hrs. For these would tRen allow the center of mass location and

numerical values, At = 90 sec., gave satisfactory motion to be determined.
results.

The work on algorithm, DUMRRR, based on the use

When nonuniformity of the rotational motion was of range and range-rate data, although not success-

introduced by giving Ux and/or wmy non-zero values, ful, should not be considered to have been fruit-
the effect on algorithm DUMRA was anomalous when the less. The failure of this algorithm reinforced an

maximum value of the angle, O = cos-l(cos e cos $), intuitive belief that more information than just
between the rotational angular momentum vector and range and range-rate data are needed to determine

the angular velocity vector was greater than a few the motion. In particular, it appears that angular
degrees. The algorithm extracted fairly accurate data is necessary to adequately define the plane of

(within 10 percent) values for the components of R rotation of the vector 1l and hence the direction
and V0 at times, but failed as often as it was suc- of w. It was hoped that the requirement for such
cessful. The reason for this behavior has not been data could be eliminated by having very good esti-

determined at this time, but appears to be connected mates of the angles 'H and 
6
H, but this does not

with the use of the position vectors to calculate seem to be the case.
velocity vectors.

An important aspect of this study is that an
The performance of algorithm, DUMRRR, was not observer was assumed to be available for the

satisfactory. In the runs made, the use of the purpose of identifying points and selecting data.
algorithm usually resulted in the reduction of Totally autonomous operation of course precludes

square root of the sum of the squares of the ele- the use of such an observer. Thus, some type of
ments of the matrix, C, but this reduction did not automatic identification technique should be de-
lead to consistent improvements in all the constants veloped if a totally autonomous determination of
which must be determined. The errors in Ro were, the target body's motion is a requirement of
for example, reduced by applying the algorithm, but actual missions.
those in Vo and r, in general were not. In a few

cases, application of the algorithm resulted in
progressively smaller values of II II for several References
iterations, but continued applications resulted in
divergence. 1. Meissinger, H. F., and Greenstadt, E. W.,

"Design and Science Instrumentation of an Un-
Attempts were made to improve the convergence manned Vehicle for Sample Return from Asteroid

properties of the algorithm by varying the conver- Eros," Paper presented at Asteroid Conference,
gence factor, Cf. An initial value of 0.02 was Tucson, Arizona, March 8-10, 1971.
given to Cf and this value increased to 0.1 and 1.0
when convergence criterion was reduced to 10

- 4 
and 2. Kopal, Zdengk, "The Axial Rotation of Asteroids,"

10
-6

, respectively. These efforts were not suc- Astrophysics and Space Science, Vol. 6, 1970,
cessful. pp. 33-35.

Since the algorithm, DUMRRR, did not perform 3. Whittaker, E. T., A Treatise on Analytical Dynam-
satisfactorily when confronted with uniform motion, ics of Particles and Rigid Bodies, Cambridge
tests with nonuniform rotational motion were not University Press, New York, 1970, pp. 144-152.
conducted.

4. Byrd, P. F., and Friedman, M. D., Handbook of
Elliptic Integrals for Engineers and Physicists.

Conclusions and Recommendations Springer-Verlag, Berlin, 1954, p. 23.

In summary, the capability for simulating the 5. Cochran, John E., "First Year Report, Study
motion of an asteroidal-type body and observations of Effects of Uncertainties on Comet and
of points on such a body has been developed. The Asteroid Encounter and Contact Guidance Require-
rotational motion simulated may be general free- ments," Contract NAS8-27664, June 1972, pp. 93-94.

Eulerian or uniform, while the translational motion
is uniform. This simulation capability has been
used to test two algorithms for determining the

constants of the motion from simulated observations

when the rotational motion is uniform.

The algorithm, DUMRA, performed the job for
which it was designed satisfactorily. However,

when required to work in the presence of "noise"

caused by nonuniform rotational motion, the algo-
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APPENDIX - COMPUTER PROGRAMS

General Program Descriptions STATE Simulates the free-Eulerian Rotational

motion and the uniform translational

The DUMRA and DUMRRR programs are written in variation, produces observational data
FORTRAN IV and executed on the IBM 370/155. The and checks the visibility of the ob-

programs are research tools, not developed produc- served points.

tion routines. The steps in the simulation,and the
names of the subroutines used,are briefly as DUMRA Determines the eleven constants, PSIH,

follows. THETAH, WW, R o, V, x1 and yl.

DUMRA MATMUL Matrix multiplication subroutine.

Values of time, T, and the time increment, DT, TILDE Matrix algebra subroutine which forms

are input to subroutine, MAIN, which calls sub- a skew-symmetric,3 x 3 matrix from a

routine, DUMRA, which calls subroutine, STATE, at 3 x 1 matrix (vector) for computation
times, Tl=T, T2=T + DT and T3=T + 2*DT. STATE of a cross-product.
receives input from subroutine, DATA, the first
time it is called and produces the position vector DOTPRO Matrix algebra subroutine which forms
sets, Rl (I,J), R2 (I,J), R3 (I,J), I = 1,3, J = 1, the dot product of two vectors.

3, for times, Tl, T2 and T3, respectively, Here, I
is the coordinate index; i.e., I = 1, 2 or 3 im- DATA Reads in data needed in STATE.
plies the x-, y- or z-coordinate, respectively, of
a point, Pj. The integer J is the number of the VISIB Checks data from STATE and prints out a
point. The position vector sets are used to de- message if any of the three points being
termine the constants of the motion. In both STATE observed is(are) not visible.
and DUMRA matrix algebra subroutines are used to
perform the necessary calculations. Subroutine DJELF Computes the Jacobian elliptic functions
STATE, also calls DJELF and DCEL1 during the simu- snu, cnu and dnu.
lation process.

CELI Computes the complete elliptic integral
DUMRRR of the first kind of modulus k.

The MAIN subroutine of this program executes the Entries are indicated in the flowchart
DUMRRR algorithm described in the body of this in Figure A-1.
report. Subroutine, MAIN, accepts a time, T,
a time increment, DT, and estimates of the con- DUMRRR
stants of the motion. It calls subroutine, RHOES,
which in turn calls STATE and computes a difference MAIN Controls execution and executes the al-
matrix DZ (I,1), I = 1,2, formed from the differ- gorithm, DUMRRR.
ences in the actual range, RHO, and range times
range-rate, and the estimated values of range, ROE, STATE Same as for DUMRA except for minor
and range times range-rate, RORODE, respectively, modifications.
for the times at which it is called. Subroutine,
DERIV, is also called from MAIN for each of the RHOES Computes the difference Az in the actual
six times necessary and computes the matrix H(I,J), and estimated observations.
I = 1,2,...,11, J = 1,2 of partial derivatives of
the observations with respect to the constants being DOTPR Same as for DUMRA.
determined. Matrix algebra subroutines are called
from MAIN, RHOES, STATE and DERIV as needed. The TRPOSE Transposes an input matrix.
observations are stacked in an 11 x 1 vector,
C(I,1), and the partial derivatives are stacked in TILDE See DUMRA above.
the 11 x 11 matrix,B(I,J). Increments in the
constants of the motion are calculated as an 11 x 1 MATMUL See DUMRA above.
vector, DX(I,1), and new estimates obtained. The
algorithm is repeatedly executed until the norm DATA Reads in actual data.
of the differences in the actual and estimated
observations is "sufficiently" small. A37IMS Inverts matrix B.

Subroutine Names and Descriptionst DJELF See DUMRA above

DECL1 See DUMRA above.
DUMRA

Entries are indicated in the flowchart.
MAIN Controls execution and reads in T and DT. in Figure A-2.

tSubroutines are used in both DUMRA and DUMRRR.
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MAIN

DUMRA VISIB

Calculates the constants of the Prints a message about

motion from observational data. the visibility of the

observed points.

STATE DATA

Obtains and stores
Simulates observations.

values used in STATE.

DCEL 1 DJELF SUBSIDIARY

Calculates complete Computes the three MATRIX OPERATION

elliptic integral Jacobian elliptic SUBROUTINES

of the first kind. functions SN, CN *Called from DUMRA and STATE.

and DN.

Fig. A-1. Simplified Flowchart for DUMRA

MAIN

Controls execution and contains

DUMRRR .alorithm.

RHOES DERIV

Computes differences in actual and Computes partial deriva-

estimated observations. b tives of observation

w.r.t. constants of

the motion

STATE

Simulates actual

observations.
-0. SUBSIDIARY

DATA I MTRIX OPERATION

Obtains and stores actual SUBROUTINES

values used in STATE.

Fig. A-2. Simplified Flowchart for DUMRRR
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Card
Variable Names and Definitions No. Information on Card

The most important variables in regard to INPUT 6 Actual Values of: H(cc 1-16), X(cc 17-32),
and OUTPUT are defined in the sections which 65-80)
follow. Other variable names are defined through- !(cc 33-48), 2(cc 49-64), X (cc 65-80)
out this appendix. 7 Actual Values of: Y (cc 1-16), Zo(cc 17-32),

Input Data 
xl(cc 33-48). y (cc 49-64), x2 (cc 65-80)

8 Actual Values of: y2(cc 1-16), x3(cc 17-32),
The data which must be provided as input to

programs DUMRA and DUMRRR is described below. All y3 (cc 33-48)

field specifications are F16.0 and the card
column in which a particular piece of data must be 9 Physical Parameters: a(cc 1-16), b(cc 17-32),

located are indicated by numbers in parentheses c(cc 33-48))

following the mathematical symbol for the piece of
data.

Output Descriptions

DUMRA
The outputs of the programs, DUMRA and DUMRRR,

Card are self-explanatory if one refers to following

No. Information on Card definitions of quantities which appear on the

printouts.

1 Initial time and time increment: t (ccl-16),

At(cc 17-32).

WXO, WYO, WZO - initial values of the components of
2 Constants of the Motion: w (cc 1-16), angular velocity in the Cxyz system.

wo (cc 17-32) z (cc 33-48),o o(cc 49-64),
o o PSIO 

= 
initial value of $ .

eH(cc 65-80).
THTAH- e H.

3 Constants of the Motion: H(cc 1-16)
PSIH = 

ell"
X(cc 49-64), X (cc 65-80). H'

4 Constants of the Motion: Y (cc 1-16), XD, YD, ZD -X, Y, Z, respectively.

o
Zo(cc 17-32). X, Y, Z - X , Y , Z , respectively.

Coordinates of Points: xl(cc 49-64), SX, SY, SZ = x-, y- and z-coordinates, respectively,

Y(cC 65-80), x2 (cc 65-80) of the point indicated.

5 Coordinates of Points: y2 (cc 1-16), PHI - ' .

x3 (cc 17-32), Y3 (cc 33-48). THETA e .

6 . Physical Parameters: a(cc-1-16 ), b(cc 17-32),

c(cc 33-48). (Semi-axes of ellipsoid)
W S angular velocity velocity, w. The Xs-, y s- and

DUMRRR zs-components of a are listed under W.

Card V = V - The components, X, i and Z, are listed
No. Information on Card -o under V.

1 Initial Time and Time Increment: TC(BC 1-16), RO = R(t ), the vector R at time, TC + DT. The
DT(cc 17-32) . - components of R are listed under RO.

2 Estimated Values of: H(cc 1-16), SR1, SR2, SR3 H the components of rl, r2, and r3,
e (cc 17-33), w(cc 33-48), x (cc 49-64), respectively, in a coordinate system
Yo(cc 65-80). rotated with respect to the Cxyz system

so that * = 0 at time, TC + DT, and

3 Estimated Values of: Z (cc 1-16), X(cc 17-32), translated so that z = 0 are printed

i(cc 33-48), i(cc 49-64), x1 (cc 65-80) . underneath these symAols.

4 Estimated Value of: yl(cc 1-16)

5 Actual Values of: wx (cc 1-16), a (cc 17-32), The errors, actual-estimated in the values for
o o actual

Wz (cc 33-48), o (cc 49-64), eH(cc 65-80) the components of R(t2 ), rl, r2, r3 and Vo computed
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using simulated values as true values, are printed
also under the headings DRO, DSR 1, DSR 2, DSR 3,
and DVO, respectively. Similar errors in the
components of r 1 , r2 and r are also given under
the headings DBRT 11, DRDOT 2 and DRDOT 3, re-
spectively. It should be noted that when 0.999 D03
is printed this does not indicate a 99,900 percent
error, but is an indication that the actual value
and the calculated values are both zero.

DUMRRR

The output of DUMRRR includes the values of the
constants of the motion and the other data needed
for the simulation of the motion in the same out-
put format as that used in DUMRA. Additional out-
put includes the estimated values of the constants
of the motion and the coordinates of P1 , the
times, T, at which data is taken, the vector C
formed from the actual and estimated observations,
the estimated values of the constants PSIH, THETAH,
WW (WE on printout),Ro 0, Vand x1 and yl and the

matrix, DX, of changes in the constants.
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DUMRA Program Listing

IMPLICIT REAL*8(A-H,O-Z)
NN=1
READ(5,1)TCDT

1 FORMAT(2F16.0)
DO 100 1=1,100
NC=1
CALL DUMRA(TCDT,NCNN)
TC=TC+DT

100 CONTINUE
STOP
END

SUBROUTINE DUMRA(T1,DTNC,NN)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION VS(3,1),ROS(3,1),SRRS(3,3)tRDOTS(3,31)DSR(3,3
.),DV(3,1),DR0(3,1),DRDOT(3,3)
DIMENSION R1(3,3),SR1(3,1),SR2(3,11,SR3(3,1l,RDOT(3,3)
DIMENSION WI(3),SRI(3,3),RHO(3),RHOD(3),R213,31
DIMENSION R3(3,3),DRI(3,3)tDR2(3,31tRDDOT(3,3),W(3,1)
DIMENSION DELR1(3,1),H(3,3),DELRD1(31)1DELRD2(3t1)
DIMENSION ATAP(3,3),ATH(3,3),DELT(3,3),VCV(3,1),V(3,1)
DIMENSION WT(3,3),RD(3,1),V23,1),RO3,1),SR(3,3)
DIMENSION SRI1(3,11,SRI2(3,11,SR13(3 1)
DIMENSION ATAPT(3,3),A3(3,3),A3T(3,3)tSRIT3(3,11
DIMENSION A3T1(3,3),A3T3(3,3)tDATI(3,3),DDRI(3t1)
DIMENSION E(3v3)tAT3(3,3),AT1(3,3),XI(3)
DIMENSION DRI1(3,1),D2R1(3,1)
DIMENSION SR11(3,1)
DIMENSION SSR(3,3)tVS1(3,I),ROS1(3,11
DIMENSION AB(3,1),BC(3,3)
00 210 1=1,3
00 209 J=1,3
R1(I,J)=0.ODO
R2(I,J)=0.ODO

209 R3(I,J)=O.ODO
V2(I,1)=0.000

210 ViII)=0.ODO
C
C OBTAIN DATA
C

CALL STATE(RlSRtSRIRDOT,WI,DPSITI,TNC,IVIS,RHORHOD
.,TTT,PPPNNtVS1,ROS1,SSR)
CALL VISIB(IVIS)
PRINT 947,T
T2=Ti+DT
NC=3
CALL STATE(R2,SRtSRIRDOTWIDPSI,T2,T,NCIVISiRHORHOD
.,TTT,PPP,NNVSI,ROSISSR)
DO 116 1=1,3
VS(I,1)=VS1(I,1)
ROS(I,1)=ROS1(1,1)
DO 116 J=1,3
SRRS(I,J)=SSR(I,J)

116 RDOTS(I,JI=RDOT(I,J)
PRINT 200,DT,T,T2

200 FORMAT(/,5X,'DT = ,,Fl2.6,1OXIT = ',F12.6,10XtT2 = ,
.F12.6,/)
CALL VISIB(IVIS)
PRINT 310,DPSI
T3=TI+2.0*DT
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CALL STATEIR3,SRtSRI1RDOTtWItDPStT3TTNCIVIStRHORHOD
.,TTT,PPPtNNVSlROS1ISSR)
CALL VISIB(IVIS)
PRINT 947,T

947 FORMAT(5X,'T=,D16.8t/)
310 FORMAT(IOX*'PSI = ',020.8,//)

C
C FIND RDOT AT TIME T2
C

DO 101 I=1,3
DO 101 J=1,3
DR1(I,JI=0.O
DR2(I,J)=0.

101 RDOT(IJI=O.O
DO 10 J=1,3
DO 10 I=1,3
DRICtlJI=(R2(IJ)-RI(I,J))/DT
DR2(I,J)=(R3(I,JI-R2(IJ))/DT

10 RDOT(I,J)=(DR1(IJi+DR2(IJ)l/2.000
C
C FIND W
C

IF(DT.GT.100.0)GO TO 543

DO 11 1=1,3
DELR1(I,1)=0.ODO
DELRD1(1,1)=O.ODO
DELRD2I1,I)=0.0DO
DELR1(I,1)=R2(I,2)-R2(I11)
DELRD1(I,1)=RDOT(I,2)-RDOT(II11
DELRD2(II1)=RDOT(I,3)-RDOT(I,2)
DOTP=0.000
VCV(I,1=0.ODO

11 XI(I)=DELRD2(I,1)
CALL TILDE(XI,DELTI
CALL MATMUL(DELTDELRD1,VCV,33,1)
CALL DOTPRO(DELRD2,DELR1,DOTP)
DO 15 I=1,3

15 W(I,1)=VCV(I,1)/DOTP
WS=W(1,1)*W(1,1I+W(2,1)*W(2,1)+W(3,1)*W(

3,1)

C
C FORM APSI AND ATH
C

543 WW=DSQRT(WS)
PRINT 544,WW

544 FORMAT(/t5X,'WW = 'tD20.8t/)
DSI=DSIN(WW*DT)
DCO=OCOS(WW*DT)
CTH=Wi3,1)/WW

STH=DSQRT(1.000-CTH*CTH)
TH=DATAN(STH/CTH)
DTH=TH*180.0/3.14159
IF(W(2,1).LT.1.OE-6)GO TO 27

PSIH=DATAN2(W(2,1),W(1,1))
GO TO 28

27 PSIH=O.0
28 PSIHD=PSIH*180.0/3.141592

CP=DCOS(PSIH)
SP=DSIN(PSIH)
DO 22 I=1,3
00 22 J=1,3
ATH(I,JI=O.ODO

22 H(I,J)=O.ODO
ATH(Z,2)=1.ODO
ATH(1,1)=CTH
ATH(1,3)=-STH
ATH(3,1)=STH
ATH(3,3)=CTH
H(3,3)=1.OD0
H(1,1)=CP
H(1,2)=SP
H(2,1)=-SP
H(2,2)=CP
CALL MATMUL(ATHtHATAP,3,3,3)
DO 120 1=1,3
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DO 120 J=1,3
A3(I,J)=O.0

120 ATAPT(I,J)=ATAP(Jtl)
C FORM A3TI AND A3T3
C

DO 30 I=1,3
DO 30 J=1,3
E(IJ)=0.000
A3TI(IJ)=O.ODO

30 A3T311,J)=0.ODO
A3TI(1,l)=DCO
A3T3(11)=DCO
A3T1(1,2)=DSI
A3T3(1,2)=-DSI
A3Tl(2,L)=-DSI
A3T3(2,1)=DSI
A3T1(2,21=DCO
A3T3(2,2)=OCO
A3T1(3,3)=1.ODO
A3T3(3,3)=1.000
00 31 I=1,3
DDRI(It1)=0.0DO
D2R1(I,1)=0.ODO

31 E(II)=1.ODO
C
C FORM AT1 AND AT3
C

CALL MATMUL(ATAPTA3TItAT1t3,3,3)
CALL MATMUL(ATAPTA3T3,AT3,3,3,3)

C
C FORM D
C

D=2.0DO*DCO-2.ODO
C
C FORM DDRI
C

DO 33 I=1,3
33 DDRII1)3=R3(Il1)-2.ODO*R21tll)+RI(ltl

C
C FIND SR1
C

CALL MATMUL(ATAPvDDR1,D2RI,3,3,1)
SR1(3,1)=0.000
SRI(1,1)=D2R1(1,1)/D
SRl(2,I)=D2RI(2,1)/D

C
C FIND RO
C

CALL MATMUL(ATAPT,SR1,SRI1,3,3,1)
DO 35 1=1,3

35 ROtIl)=R2(I,1)-SRI1Il)
C
C FIND V
C

CALL MATMUL(ATl,SRI1SR113,3,31)
DO 34 1=1,3

34 V(I1)=(-RI(I1,1)+RO(I,1)+SR11(I,1))/DT
C
C FIND SR2 AND SR3
C

DO 36 1=1,3
SRI2(I,1)=R2I,2)-RO(II)

36 SRI3(I1L)=R2(I,3)-RO(Il)
CALL MATMUL(ATAPSRI2vSR2,3,3tl)
CALL MATMUL(ATAPSRI3,SR3,3,3,1)

150 FORMAT(3(2X,6D20.8,/))
PRINT 114

114 FORMAT(12X,'W',17X,'V,17X,'ROt,19X,'SR19,17X,'SR2 ,17X
.,'SR3',/)
PRINT 150,(W(II1),V(I,11,RO(Il)tSR1(I,1),SR2(I1t)tSR3(
.1,1),1=1,3)

DO 121 1=1,3
DV(I,1)=999.0
DRO(I13=999.0
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00 121 J=1,3
OSRI,J)=999.0

121 DRDOT(I,J)=999.O
00 115 1=13
IF(DABSIVS(Il)i.LT.1.OD-12)GO TO 117

DVII,1)=(V(I,1)-VS(I,1))/VS(Ilt)
117 IF(DABSIROS(I,1l).LT.1.00-12)GO TO 118

DRO(It1)=(RO(l )l-ROS(ll) I/ROSIIl1)

118 IF(DABS(SRRSII,1l).LT.1.OD-12)GO TO 119

DSRII,1l=(SR1(1,1)-SRRS(I,11)/SRRS(ItI)
119 IF(DABS(SRRS(I,2)l.LT.1.OD-12)GO TO 122

OSRII,2)=ISR2(I,1)-SRRS(I2))/ SRRS(1,2)

122 IF(DABSISRRS(I,3).LT.1.OD-12)GO TO 123

DSR(1,31=(SR3(tl,-SRRS(II3))/SRRS(I 3)

123 CONTINUE
DO 115 J=1,3
IF(DABS(RDOTS(IJI).LT.1.OD-12)GO TO 115

DRDOT(IJ)=(RDOTII,Ji-RDOTS(ItJI)/RDOTSIIJ)
115 CONTINUE

PRINT 50
PRINT 110,IDRO(I11),(DSR(I,J)tJ=1,3),I=1*3)
PRINT 51
PRINT 110,(DV(II,1),DRDOTIIJ),

J = 1,3),1=131

110 FORMATISX4D20.8,/)
50 FORMAT(/l914X9@DRO*,16X

e'DSR 1',15XIDSR 2*,15XO*DSR 31

51 FORMAT(//,14X,'DV'916X,'
DRDOT 1 ,13X,'DRDOT 2*#13X,

.0DRDOT 3't/)
RETURN
END

SUBROUTINE STATE(RRSRRSRRIRDOTWI,DPSITC,T2,NCIVIS
.*RHORHODDTHETADPHINNV,ROSSRI
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION RDOT(3,3)tRRI(3t3)SRR(3,3),SRRI(3,3),WI(3I
DIMENSION V(3),CRO(3)tAPHI(3,3),ATHETA(3,3),APSI3,3)*
1APSIH(3,3)tAO(3,3)tA5t3,31)A6433)tCR(3),SR(3,11
DIMENSION A3T(3,3)1RI31),RA(3l1),SRP(3,1),SRPI(3,11
DIMENSION IV(3),A7(3,3),ATHTAH(3,3),SRI(3,1),WB(3)
DIMENSION RHO(3),RHOD(3)
DIMENSION D(3,3)tE(3)
DIMENSION WBT(3,3),WXSRA(3t3),RDD(3,3),RD02(33)
DIMENSION RO(3,1),SSR(3,3)
DIMENSION SSRA(3,3),A6T(3,3)
DIMENSION AB(391),BC(393)
DIMENSION XI(3)tWD(3)gWDT(3,3),WDXSRRI3,3),SRRA(391)
EQUIVALENCEITHETAHTHTAH)
IVtI)=5
IV(2)=3
IV(3)=1
K3=0
11=0
IF(NC.NE.1) GO TO 6
CALL DATA(WXOWYOWZOPSIO,THTAHPSIHVtCROtSRRSAtSBS
.CNN)
WYO=.00005
THETAH=30.0
PSIH=30.0
WRITE(6,999)SAgSBSC

999 FORMAT(7X*'SA=',F16.8,7X, SB=* F l 6.8 t7XS C =',F l6.8//)

SAS=SA*SA
SBS=SB*SB
SCS=SC*SC
A=(SBS+SCS)
B=(SAS+SCS)
C=(SAS+SBS)
SIGX = A/C
SIGY = B/C
DO 920 I=1,3 17



920 SRR(3,13=SC*DSQRT(1.00-SRR(1I)**2/SAS-SRR(2,I)**2/SBS

PRINT 47, WXOtWYoWZO#PSIOTHTAHPSIH
47 FORMAT(7X,#WXO=',E16.8.6X, WYO='.E16.8,6X,'WZOo,E16.8,
.//.?XOPSIO=,E6.8,5X,THTAH=IE6.84Xt'PSIH.,E6.8

PRINT 48,V(1),V12),v(3) ,CROII),CRO(2),CRO(3)
48 FORMAT(7X,'XD=' ,E16.8,7X,'YD=',E16.8,7XPeZDouE16.8,,,,

*7XSX=',El6.8,8X#sY=*,El6.8.8Xt*sL9,E16.8t,,)
00 910 1=1,3

910 PRINT 49,[,SRR(1, I),SRR12,J J,SRR(3tiD
49 FORMAT17WPOINT ',I1.4X, 'SX=',E16.8,7x,'SV=0,E16.8t7Xt

.ISZ=',E16.8,//3
P1=3.14159265
PSID=PSIO*PI /180.0
THTAH=THTAH*PI/ 180.0
PSIH=PSIH*PI /180.0
WIP = WXO/WZO
W2P = WYO/WZO
W3P = 1.0000000000
PSIP = PSIO
SIGZ = 1.00000000
TP=.5*( SIGX*W1P**2eSIGY*W2P**2,W3P**2)
HP=(SIGX**2*WIP**2tSIGY**2*W2P**2+W3P**2)**.5
SK=(( (2.*TP-HP**2)*(SIGY-SIGX) )I((HP**2-2.*SIGX*TP)*( 1.

.-SIGY3 ))**.5
CALL OCEL1(RESSKtIER)
XLAMP=((HP**2-2.*SIGX*TP)*(1.-SIGY)/(SIGX*SIGY))**.5
Al=ISIGY*(1.-SIGY)/(SIGX*(1.-SIGX)J)**.5
A2=( SIGX*( 1.-SIGX )/( SIGY*( 1.-SIGY I I*.
A3=((SIGX*SIGY)**.5*(SIGY-SIGX)I/U11.-SIGX)*(1.-SIGYI*

ROW=((HP**2-2.*SIGX*TP)/(1.-SIGX))**.5
DELTA=( SIGY* (SIGY-SIGX)/( 1.-S IGXI) *( W2P**2/ROW**2 I
WRITE(6,3)A1,A29A3,ROWvDELTA

3 F0RMtAT(1X95(2Xo012.5))
TAUP= 0.0
T=0.0
DTAU=0.0001*RES/XLAMP
WRITE(695451TPHPRESSIGX, SIGYSIGZ
WRITE(6#546) SK#XLAPP

545 FORMAT(6(3X#012.5))
546 FORMAT(2(3X,012.5I,/)

00 5 1 193
00 5 J =1,3

ATHErA(1,J) =0.0000000
APSIfIJ) = 0.00000
ATHTAH(IJ) = 0.0
APSIH(IJ) 0.00000

5 APHI(I,J) =0.00000

ATHTAH(1,1) = DCOS(THTAH)
ATHTAH(1,3) = -DSIN(THTAH)
ATHTAH(292) = 1.0000000
ATHTAH(3,31 = ATHTAH(1ltl
ATHTAH(3,II =-ATHTAH(1,3I
APSIH(ltlI DCOS(PSIH)
APSIH(192) =DSIN(PSIH)
APSIH (2.2) =APSIH(1,II
APSIH(2,1) =-APSIHEI,2I
APSIH(3,3) = 1.00000000
CALL MATMUL(ATHTAHAPSIH, AO,393 3)

6 IF(T.GT.TC)GO TO 901
IvIs=1
12=0
1 TAUP/WZO
SCK=1 .-SK**2
IF( SK.LT. 1.00-05)K3=2
IF( K3. EQ. 2) TAUP=TC*W 10
IF(K3.EQ.2IT=1C

-ARG=XLAMP*TAUP

CALL DJELF(SNiCNtDNARG*SCKI
WX=(WlP*CN-A1*(W3P/ROW)*W2P*SN*N/(..DELTA*SN**21
WY=(W2P*CN*DN+A2*(W3P/R0WJ*WIP*SN)/(l.-DELTA*SN**2)
WZ(3*NA*l*WPRW*NC)(.DLAS*2
CT=OSQRT(HP*HP-SIGX*SIGX*WX*WXI /HP
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ST=-S IGX*WX/HP
SP=SIGY*WY/(HP*CT)
CP=SIGZ*WZ/(HP*CT)
SPST=SP*ST
CPST=CP*ST
PSIP=PSIP+HP*(SIGY-1.)*SP*SP*DTAU
PSI=PSIP+HP*TAUP
THETA = DATAN2tST,CT)
PHI = DATAN2(SP,CP)
CCT=CT*CP
SCT=OSQRT( 1.ODO-CCT*CCT)
CTHETA=DATAN2( SCTCCT)
DCTHET=CTHETA*180.ODO/3. 141592
DPHI=PHI*180.O0000/3. 14159
DTHETA = THETA*180.O000000/3.14159
DPSI = PSI*180.000000/3.14159
DO 222 1 = 1,3
DO 222 J = 1,3
APHI(IJ) = 0.000
ATHETA(I*J) = 0.000
IF(K3.LT.2)GO TO 222
CT=1 .000
ST=0.ODO
CP=1. 000
SP=0. 000

222 APSI(I9JJ = 0.000
APHI(1,1) = 1.0000000
APHI(2,2) =CP
APHI(293) = SP
APHII(3,21 = -SP
APHI(3,3) = CP
ATHETA(ltl) =CT
ATHETA(1,3) = -ST
ATHETA(2,2) = 1.0000000
ATHETA43.3) =CT

ATHETA(3,1) = ST
APSI(l11 = DCOS(PSI)
APSI(1,2) = DSIN(PSI)
APSI(2#1) =- APSI(192)
APSI(2,2) = APSI(191)
APSI(3,3) = 1.000
CALL MATMUL(ATHETA,APSI ,A593,393)
CALL MATMUL(APHI ,A59A693#3,3)
CALL MATMUL (A6,AO,A793*3,3)
DO 33 1 = 1,3
D0 33 J 103

33 A3TfltJ) =A7(J,I)

DO 949 KKL,93
D0 950 1=1,3

950 SR(ItI,)=SRR(IKK)
CALL MATMUL(A3T,SRtSRI .,3,31)
D0 10 1 =1.3
CRM1) V(I'I*T + CROMI

10 R(1,1)=CR( 1)4SRI( 1,1)
CALL MATMUL (A7*R*RAt3,3,1)
RHOL=DORT( RI1, 1) *R( 1,1)+R( 2,1) *R(C2,1)+Rt 3,1)*R3, 1))
RHO(KK)=RHOI
XLA=RA(191i/RHOI
XMA=RA(291)/RHOI
XNA=RA(3, 11/RHOI
A4=XLA*XLA/SAS+XMA*XMA/SBS+XNA*XNA/SCS
B4=(A4-XLA*XLA/SAS)*SR(l,1)-XMA*XLA/SBS*SR(2,1)-XNA*XLA
./SCS*SR(3,1)
SRP( 1.1)=2.00000*B4/A4-SR( 1,1)
SRP( 2.13=1XMA/XLA 3*1SRP( 1,1)-SRI 1,1)) +SRI 2, 1)
SRP(3,1) = IXNAIXLA)*(SRPi,)- SR(1,1fl4SR(3,1)
CALL MATMUL (A3TvSRPSRPI,3,3,1)
RHO2=DSORT((CR(1)+SRPI(1.1L)**2+(CR(2)+SRPII2,lfl**2+IC
.R(3)+SRPI (3,1)3**2)
[FIRHO2.LT.RHO1) IVIS=IVIS+IVIKK)

50 CONTINUE
948 CONTINUE

DO 949 [J=193
RRI IJKK)=RC IJ,1)
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949 SRRI(IJ#KK)=SRI(IJ*1)
WX = WX*WZO
WY = WY*WZO
WZ = WZ*WZO
WB(I)=WX
WB(2)=WY
WB(3)=WZ
XI(1)=(SCS-SBS)/A
XI(2)=(SAS-SCS)/B
XI(3)=(SBS-SAS)/C
WDIlI=WB(2)*WB(3)*XI(1)
WD(2)=WB(3)*WBI)*XI(2)
WD(3)=WB(I)*WB(2)*XI(3)
00 908 J=1,3
00 908 1=1,3

908 RDOT(I,JI=V(I)+A3T(1I1)*(-WB(3)*SRR(2,J)+WB82)*SRR(3tJ)
.)+A3TIlt2*(WBI3)*SRR(tJ-WB(1)*SRR(3,J)I+A3T(I,3)*(-W
.8(2)*SRR(1,Ji+WB(1)*SRR(2,JI)
DO 899 J=1,3

899 RHOD(J)=(RR(1,J)*RDOT(1,J)+RRI(2J)*RDOT(2,J)+RR(3,J)*RD
.OT(3,J))/RHO(J)
DO 909 1=1,3

909 WI(II=WX*A3T(I,I1+WY*A3T(1,2)+WZ*A3T(I,3)
930 CONTINUE
109 TAUP = TAUP + DTAU

T=TAUP/WZO
11=1
T2=T
IFIK3.EQ.2)GO TO 901

110 CONTINUE
GO TO 6

901 CALL TILDE(WB,WBT)
IF(T.GT.TCT=(TAUP-DTAU)/WZO
CALL MATMUL(WBT,SRRtWXSRA#3,3,3)
CALL MATMUL(WBTtWXSRARDD,3,3t3)
CALL DOTPRO(WB,WBWW)
IFIK3.EQ.2)GO TO 699
DO 601 I=1,3
SSRAlIl)=SRR(I11)

601 RO(I.1)=CR(I)+A3T(1,3)*SRRI3,1)
CALL TILDE(WDOWDT)
CALL MATMUL(WDTSRRWDXSRRt3t3,3)
00 606 1=1,3
DO 606 J=1,3

606 RDD(I,J)=RDD(I,Ji+WDXSRR(IJ)
GO TO 711

699 CONTINUE
DO 700 I=1,2

700 SSRAII,1)=-ROD(I,1)/WW
SSRA(3,1)=0.ODO
RDDI3,2)=RDD(3,2)-ROD(3,1)
ROD(3,3)=RDD(3,3)-RDDI3,1)
RDD(3,1)=0.000
CALL MATMUL(A3T,RDDRD2,3,3,3)
00 703 I=1,3

703 RO I,1)=RRIl1)+RD2I,1)/WW
711 CONTINUE

00 702 J=1,3
00 702 1=1,3

702 A6T(I,J)=A6(JI)
DO 705 1=1,3
00 705 J=2,3

705 SSRA(1J)=SRR(IIJ)
SSRA(3,2)=SRR(3 2)-SRR(3,1)
SSRA(3,3)=SRR(3,3)-SRR(3l1)
CALL MATMUL(A6TSSRA#SSR,3,3,3)
PRINT 112,DPHIDTHETACTHET

112 FORMAT(5XIPHI=O,D06.85Xt'THETA='tD16.85XstOCAPTHETA=

.t,016.8,/)
911 CONTINUE

RETURN
END
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SUBROUTINE DATA(WIW2tW3,PSO11ITHTAHIPSIHItVlICR1ISRRI
.tS1,S2*S3,NN)
IMPLICIT REAL*8(A-HO-Z)
DIMENSION CR1(3)tVI(3)PSRRII3,3)
DIMENSION VP(3),CROP(3) SRRP(3,3)
IF(NN.GT.I)GO TO 10
READ(5,100)WXOPWYOPtWZDP,PSIOPTHTAHPtPSIHPVP(I1)VP(2
.),VP(3)tCROP(1),CROP(2),CROP(3)tSRRP(t1),SRRP(21),tSRRP
.(1,2),SRRP(2,2),SRRP(1,3),SRRP(2,3)

100 FORMAT(5FI6.0)
READ 101SAPSBPSCP

101 FORMATI3F6.0)
SRRP(31)=0.0D00
SRRP(3,2)=0.000
SRRP(3,3)=0.0DO
NN=NN+1

10 CONTINUE
Sl=SAP
S2=SBP
S3=SCP
PSIH1=PSIHP
PSIOI=PSIOP
THTAHL=THTAHP
W1=WXOP
W2=WYOP
W3=WZOP
DO 20 J=1,3
CRI(Ji=CROP(J)
VI(J)=VP(J)
DO 20 1=1,3
SRR1IIJI=SRRP(IJ)

20 CONTINUE
RETURN
END

SUBROUTINE VISIB(IVIS)
IF(IVIS.NE.1) GO TO 19
PRINT 3

3 FORMATI/,6X,'ALL POINTS VISIBLE's/)
19 IF(IVIS.LT.6) GO TO 17

PRINT 6
6 FORMAT(/,6XtPOINT NUMBER 1 NOT VISIBLE',/)

IVIS=IVIS-5
17 IF(IVIS.LT.4) GO TO 7

PRINT 8
8 FORMATI/,6XPOINT NUMBER 2 NOT VISIBLE',/)

IVIS=IVIS-3
7 IF(IVIS.LT.2) GO TO 9

PRINT 18
18 FORMAT(/,6X,'POINT NUMBER 3 NOT VISIBLE',/)
9 CONTINUE

RETURN
END

SUBROUTINE DOTPRO(D,EDOT)
IMPLICIT REAL*8(A-H,0O-Z)
DIMENSION D(3,1),E(391)
DOT=D(1,1)*E1,l1)+D(2,1)*E(2,1)+D(3,1)*E(3,1)
RETURN
END
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SUBROUTINE MATMUL (ABeCL,MN)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(L,M),B(M,N),C(L,N)
DO 15 I=I,L
DO 15 K=1,N
TEMP=O.O
00 14 J=1IM

14 TEMP=TEMP+A(I,J)*B(JtK)
15 C(I,K)=TEMP

RETURN
END

SUBROUTINE TILDE(E,D)
IMPLICIT REAL*B(A-H,O-Z)
DIMENSION D(3,3),E(3)
DO 5 1=1,3

5 O(Il)=O.0
D(1,21=-E(3)
D(2,1)= E(3)
D(1,31= E(2)
D(3,1)=-E (2)
D(2,3)=-E(1)
0(3,2)= E(1)
RETURN
END

Listings of subroutines DJELF and DCEL 1 appear in the listing of program, DUMRRR.
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D1fRBPr-ogramn Listing

IMPLICIT REAL*81A-HtO-Z)
DIMENSION BAC 11,11),B(11,llb*H(2,11lhRl(391).DZ(2,1lbRO
.3, 1),VOl 3,1) ,CR( 3, 1) DX( 11,1) ,WEIGHT(I 1, 1),PRO( 11,13,
.A3,3) ,C] 11, 13AT( 3,3)
NNIl
N M= 0
READ 5,1) TC#DT

1 FORMAT(ZF16.0)
CHECK= 1.000
T =TC
NC=l
ROEST=l .0005
WST=1 .00-04
READI 5, 133PSIH, THETAM, WE ,RO( 1,13 RO( 2,1)
READ(5,13)RO(3,1),VOill) ,V0(2,13,VO(3,13,Rl(l,l)
RkA0(5,13)Rl(2, 13

13 FORMAT(5FI.6.0)
RIC 3,1) =0.00
PRINT 937,PSIHTHETAHWE,RO(1,1) ,RO(2,13,RO(3,lhvVO(l,1
.htV3(2,I),VO(3, 1) ,Rl(1,1) R1(2,1),Rl(3,1)

937 FORMAT(5X, 'PSIH=,016.8,5X,'THETAH=',016.85X,WEOD16
..8,/,5X.'XO=',06.8,5X,Y0=',016.8,5X,*ZO=',Dl6.8,/,5X,
.'XUD=',016.8,5X,'VOD=',Dl6.8,5X,'ZOD=',Dl6.8,/,5X,'Xl1
* ,D16.8,5X 'Yl=' ,Dl6.8,5X '11=' ,D16.8,//)

2 CONTINUE
NM=NM+l
INM=NM/10
PSIH=PSIH*3. 141592/180.0
THETAH=THETAH*3.141592/180.0
00 30 K=196
PSI=WE*T
PRINr 947,T

947 FORMAT(5X. T=',O16.8,/3
948 CONTINUE

CALL RHOES(DZT ,NC,PSIHTHETA~tWERO,V0,RlCR,A,PSI ,RaE
* ,RURODEINNNM, INM)
0I(l,13=D1(1,13 /ROEST
01(2, 13=OL(2#1)/ROEST/ROEST/WST
CALL TRPOSE(A,AT,3,3)
TND=T*WST
DO 38 1=193
R0t I,13=RU(I,13/ROEST
V0(I, 13=VO( 1,13 /ROEST/WST

38 RI II, 1 =R (1,1) /ROEST
ROE=ROE/ROEST
WE=WE/WUST
CALL DERIV(HRO,VORIWE ,PSIHTHETAHtROEPS1,TNDATA 3
IF(K.EQ.61G0 TO 33
DO 31 1=1,2
DU 31 J=L911
8(2*K-2+I ,J)=H(1I J)

31 C(2*K-2+I,13=DZ( 1,1)
T= T DT
DO 39 1=1,3
RO( 1,13=RO(1,13*ROEST
V0l I,13=V0(Iq13*ROEST*WST

39 RUI1,13=RI(1,13*ROEST
WE=WE*WST

30 CONTINUE
33 CONTINUE

00 32 J=1911
32 6111,J)=H(1,J3

Cl 1,)=0Z(I11
PRINT 919

919 FORMAT(IOX,#C MATRIX$,/)
PRINT 51q(C(I113,=1,113
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51 FORMAY(1l(5XD20.8#/)/)

949 CONTINUE
DU 4 1=1,11
DO 4 J1.11l

4 BA(19J)=B(IJ)
CALL A371MS( 11,BA)
CALL MATMUL(BACOX,11,11, 1)
CFO0.02
IF(CHECK.LT. 1.OD-4)CF=O. 1
IF(CHECK.LT. 1.OD-6)CF=1.O
DO 5 1-1,3
ROI I,1)=RO(1, 1) 'DXI 1+3, 1) *CF

5 VO(191J=VO(1,1)+DX(I+6tl)*CF
RI(1,j)=RL(1,1)+DX(1O,1)*CF
RL(Zvl)=Rl(2,1)+UX(lltl)*CF
PSIH=PSIH*DX (1,l)*CF
THETAH=THETAH+OX( 2,1)*CF
WE=WE+DX( 3,1)*CF
WE=WE*WST
D0 40 1=1,3
ROI I,1)=RO(I,1)*ROEST

40 VO(l)=VU(Itl)*ROEST*WST
RLI 1,1)=RI(l1, U*ROEST
RI(2, 1)=RL(2,1) *ROEST
CHECK=O.ODO
DO) 35 1=1,11

35 CHECK=CI 1,1)*CI 1,11.CHECK
LHECK=D)SQRT(CHECK)
PSIH=PSIH* 180.0/3.*14 1592
TH-ETAH=THETAH*180.0/3. 141592
PRINT 8,PSIHTHETAH,WECHECK

8 FORMAT(5,X, PSIH=',D20.8,4X,'THETAH=',D20.8,4Xt'WE='.02
.0.8,4X, CHECK= ,D20.8,//)
PRINT 9,(RO( Iq,VU(I~lh9I=1p3)

9 FORMAFI 15X, RO' ,23X, 'VO' ,/,3(5X,020.8,5XD20.8,/1 ,/I
PRINT 1O,(Rl( 1,11,1=1,2)

13 FORMATE 15X,'R1' ,,2( 5XD20.8,I) ,//)
PRINT 1,D(Il,=,1

11 FORMAT(ZOX, 'DX MATRIX' ,/.4(5X,3(D20.8,3X),//) .111
950 CONTINUE

IF(CHECK.LT.1.OD-07)GO TO 111
T =TC
NC=2
GO TO 2

Ill STOP
END

SUBROUTINE DERIVI H,R0,VOR1 ,WE,PSIH,THETAHROEPSI ,TAT
.9,A)
IMPLICIT REAL*8(A-HO-Z)
DIMENSION A(3,3 ),AT( 3,3) ,H(2,11) ,RO(3,1),V013,1)
DIMENSION R1(3,1) ,O1(3,1),D2(3,1lD3(3,1),D4(1,31
DIMENSION D5(1,31.06(193) ,C(3,11,RITI 1,3),ROT(1,3)
DIMENSION R(3,1b9G31(3,1) ,VOT(193)
DIMENSION D10(3,3),WET(3,31 ,Gfl114
AA=Rl(1,i)*DCOS(PSI)-R112,11*OSIN(PSI)
BB=RLIl,1)*DSIN(PSI)+Rl(2,1I*DLOS(PSI)
DO 6 1=193
RIII1l=RD(It1)+VO(Itll*T

6 D311,1V0O.0
DII11)=1.0
D212,11=1.0
D3(3, 11=L.0
CALL TRPOSE(R1,RlT,3,1)
CALL TRPOSEIRROT,3,1)
CALL TRPOSE(VOVDT,391)
CC 1, i=-AA*DCUS( THETAH 1*DSIN( PS 1)4)-BB*DCOS( PSIH)



C(291)=AA*DCOS(THETAH)*DCOSIPSIH)-BB*OSIN(PSIH)
C(391)=O.O
CALL MATMUL(ROT*CtGlltlt3tl)
H(Itl)=Gll(lvl)/ROE
C(L,11=-AA*DC:OS(PSIH)*DSIN(THETAH)
C(291)=-AA*DSIN(PSIH)*DSIN(THETAH)
C(391)=-AA*DCOS(THETAH)
CALL MATMUL(ROTCtGI1919391)
H(1,2)=Gll(ltl)/ROE
C(Lol)=-BB*DCOS(PSIH)*DCOS(THETAH)-AA*DSIN(PSIH)
C(ZI)=-BB*DSIN(PSIH)*UCOS(THETAH)+AA*DCOSIPSIH)
C(39L)=-BB*DSIN(THETAH)
CALL MATMULIROTCGI1919391)
H(193)=Gll(1,1)*T/ROE
CALL MATMUL(AtDl#G31,3,391)
CALL MATMULIRITG3lvGlltl93tl)
H(194) (R(1v1)+GII(ILJ)/ROE
CALL MATMUL(AD2,G31,3,3,I)
CALL MATMUL(RlTG31,Gll,1,3,1)
H(1*5)=(R(291)+Gll(ltl))/RGE
CALL MATMUL(AtD3,G3193,3,1)
CALL MATMUL(RITG31*Glllt3tl)
H(196)=(R(391)+Gll(ltl))/ROE
H(1#7)=T*H(194)
H(1#8)=T*H(lt5)
H(199)=T*H(196)
CALL MATMUL(AtDl9G31,3,3,1)
CALL MATMUL(ROTtG31,Glltl,3,1)
H(1910)=(Gll(ltl)+RI(1,1))/ROE
CALL MATMUL(AD2,G31,3,391)
CALL MATMUL(ROTqG31,GII,1v3#1)
H(itll)=(Gll(1,1)+Rl(291))/ROE
C(iol)=-AA*DCOS(THETAH)*DSIN(PSIH)-BB*DCOS(PSIH)
C(291)=AA*DCOS(THETAH)*DCOS(PSIH)-BB*DSINIPSIH)
C(3,1)=O.O
CALL MATMUL(VOToCoGI191,391)
H(Z*I)=Gllfll)
C(1,11=BB*DSIN(PSIH)*DCOS(THETAH)-AA*DCOS(PSIHI
C(Ztl)=-BB*DCOS(PSIH)*DCOS(THETAH)-AA*DSIN(PSIH)
C(391)=O.O
CALL MATMUL(ROTtCtGll#19391)
H(Z,1)=Ii(291)+WE*Gll(ltl)
C(Ltll=-AA*DCOS(PSIH)*DSIN(THETAH)
C(Zgl)=-AA*DSIN(PSIH)*DSIN(THETAH)
C(391)=-AA*DCOS(THETAH)
CALL MATMUL(VOTCvGlltl,391)
H(292)=Gll(1,1)
CD=DCOS(PSI)*WE*Rl(2,1)+DSINIPSI)*WE*Rl(lol)
C(LI)=DCOS(PSIH)*DSIN(THETAH)*CD
C(291)=DSIN(PSIH)*DSI.%4(THETAH)*CD
C(391)=DCOS(THETAH)*CD
CALL MATMUL(ROTCoGI1,19391)
H12,2)=H(292)+Gll(ltl)

C(311)=O.O
CALL MATMUL(ATCtG31,3t3tl)
CALL MATMUL(R0T9G31,Gllvlv3vl)
H(2*3)=Gll(ltl)
C(LI)=-BB*DCOS(PSIH)*DCOS(THETAH)-AA*DSIN(PSIH)
C(Ztl)=-Bb*DSIN(PSIH)*DCUS(THETAH)+AA*DCOS(PSIH)
C(3,1)=-fi8*DSIN(THETAH)
CALL MATMULIVOToCGll,193,I)
H(Z,3)=H(Z,3)+T*Gll(l#l)
C(Ltl)=-AA*DCOS(PSIH)*DCOS(THETAH)+BB*DSIN(PSIH)
C(2tl)=-AA*DSIN(PSIH)*DCOS(THETAH)-BB*DCOS(PSIH)
L13,1)=-AA*DSIN(THETAH)
CALL MATMUL(R0T#CvGll,1q3,1)
H1293)=H(2,3)+Gllfltl)*T*WE
CALL TRPOSE(DltD493YL)
CALL TRPUSE(D2tD5,391)
CALL TRPOSE(D3tD69391)
DO 12 1=1#3
DO 12 J=1*3
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12 WET(IJV=O.0
WETI 1,2)=-WE
WET( 2,1)=WE
CALL MATMUL( WET#Rl,G31,393, 1)

CALL MATMUL(ATG31,G31,3,3, 1)
CALL MATMULfD4,G31;GII, 1,3, U
H(294 )=VO( 1,1)+G11( 191)

CALL MATMULt D59G3ltG1I,1, 3,1)
Mi 2,5) =VO( 2,1 )4G11 (11)
CALL MATMUL(D6,G31,GlI,I,3,IU
H(2#6)=VO(3,1I)+Gll( 1,13
CALL MATMUL (AT, RI,G31, 3,3,1)
CALL MATMUL( D4,G31,Gllt,,3,1)
34(2,7 )=ROT11, 1)'Gll 1, 1)
CALL MATMUL(D59G319GI1,1, 3,1)
H(2t8)=ROT(lt2)+Gl1( 1,1)
CALL MATMUL(D6,G319GIL91,3, 1)
H(2j9)=ROTIl13)+Gll(l,1)
CALL MATMUL(WET,D1,G3lt3t3tl)
CALL MATMULI AT,G31,G31 ,3,3, 1)
CALL MATMUL(ROT,G31*G1I, 1,3,1)
34(2, 10I=Gll( 11)
CALL MATMUL(AT,D1,G31,3,391U
CALL MArMULI VOTG31tGI1 ,1,3,1)

34(2, 10 1=3(2, 1O)+Gll( 11)
CALL MATMULI WET,D2,G31,3t3, 1)
CALL MATMUL(ATtG31,G31,3t3, 1)

CALL MATMUL(ROT9G3l,GI1,1 ,3,1)
Hi 2,11)=Glltltl)
CALL MATMUL(AT,D2,G31,3,3, 1)

CALL MATMUL(VOTtG31,GiI, 1,3,1)
3(2,113=34(2,11 3tGll( 1,1
RETURN
E ND

SUBROUTINE RHOES(DL, TNC, PSIH,THETAHWE,RO,VO,RlCR,AP
.SitROERORODE,NN,NM, [NM)
IMPLICIT REAL*8(A-HtO-Z)
DIMENSION RR(3,3) ,SRR(3,3) ,SRRI (3,3) ,RDOT(3,33 ,WI (3),

*RHO( 3) ,RHOD( 3) ,RO( 3,1) ,RL(3, 1) ,CR( 3t1),VO(3tl)t

.WET(3933hA(3,3),AT(3,3),G31(391)
DIMENSION OZ(2tl) ,G32(3t1),V1I(3,1)
DIMENSION R(3,1) ,V(391)
CALL STATE(RRSRRSRRI ,RDOTWI ,DPSTI T,T2,NC,IVISRHORH
.OODTHETAtDPHI,DDDFFF,NNNMINM)
NC =2
DO 12 1=1,3
G31( 1,13=0.0

12 CR( I,1)=RO(Itl)+VO( I,1)*T
A(1,i)=DCOS(PSI)*DCOS(THETAH)*OCOS(PSIH)-DSIN(PSI)*DSIN
* (PSI13)
A(1,2 3 DCOS( PSI) *DCOS( THETA ) *DSIN( PS 134) *SIN( PSI) *DCOS

.(PSIH)
A(193)=-DCOS(PSI)*DSIN(THETAH)
A(2,1)=-DSIN(PSI)*DCOS(THETAH)*DCOS(PSIH)DCOS(PSII*DSIN

* (PSI H)
A(2,2)=-DSIN(PSI)*DCOS(THETAH)*DSIN(PSIH)+DCOS(PSI)*OCOS

* (PSIH-)
A(2,3)=DSIN(PSI)*DSIN(THETAH)
A3, 1)=DSIN( THE TAH) *DCOS( P514)

A(3,2)=DSIN(THETAH)*DSIN(PSI13)
At 393)=DCOS(THETAH)
CALL TRPOSE(A,AT,3,3)
CALL MATMUL(ATPR1,G3lt3t3, 1)
DO 17 1=1,3

17 R(Ivl)=CR(I,13+G31( 1,1)
CALL UOTPRO(RtRgROES)
ROE=DSQRT(ROES)
DO 15 1=1,3
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DO 15 J=1,3
G32(I,1)=O.ODO
VII(Il)=O.ODO

15 WET(IJ)=O.ODO
WET(1,2)=-WE
WkT( ,l)=WE
CALL MATMUL(WETRI,G32,3,3,1)
CALL MATMUL(ATtG32,V11 33,1)
DO 18 I=1,3

18 V(I,t)=VO(I,1)+VI (1I,1)
CALL DOTPRO(RtVRORODE)
DZ(1,1)=RHO(1)-ROE
DL(2,1)=RHOD(1)*RHO(1)-RORODE
RHODE=RORODE/ROE
RETURN
END

SUBROUTINE DCEL1(RES,AKIER)
C SUBROUTINE DCEL1
C
C PURPOSE
C CALCULATE COMPLETE ELLIPTIC INTEGRALS
C OF THE FIRST KIND

C DESCRIPTION OF PARAMETERS
C RES -RESULT VALUE IN DOUBLE PRECISION
C AK -MODULLUS (INPUT) IN DOUBLE PRECISION
C IER -RESULTANT ERROR CODE WHERE
C IER=O NO ERROR
C IER=L AK NOT IN RANGE -1 TO +1

DOUBLE PRECISION RESAKGEO,ARI,AARI
IER=Z
ARI=2.D0
GEO=(0.5DO-AK)+0.5DO
GEO=GEO+GEO*AK
RES=0.5DO
IFIGEOi1,2,4

L IER=1
Z RES=1.075

RETURN
3 GEO=GEO*AARI
4 GEO=USQRT(GEO)

GEO=GEO+GEO
AARI=ARI
ARI=ARI+GEO
RES=RES+RES
IF(GEO/AARI-0.999999995DO)3,5,5

5 RES=RES/ARI*6.283185307195865D00
RETURN
END

SUBRUUTINE DJELF(SN,CN,DNXSCK)
DIMENSION ARI(12),GEO(12)

C SUBRUUTINE DJELF
C
C PURPOSE
C COMPUTES THE THREE JACOBIAN ELLIPTIC FUNCTIONS
C SN,CNDN.
C
C DESCRIPTION OF PARAMETERS

SN - RESULT VALUE SN(X) IN DOUBLE PRECISION
CN - RESULT VALUE CNIX) IN DOUBLE PRECISION
DN - RESULT VALUE DN(X) IN DOUBLE PRECISION

C X - DOUBLE PRECISION ARGUMENT OF JACOBIAN
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C ELLIPTIC FUNCTIONS
C SCK - SQUARE OF COMPLEMENTARY MODULUS IN DOUBLE
C PRECISION

EVALUATION
C CALCULATION IS DONE USING THE PROCESS OF
C THE ARITHMETIC GEOMETRIC MEAN TOGETHER WITH GAUSS
C DESCENDING TRANSFORMATION BEFORE INVERSION OF THE
C INTEGRAL TAKES PLACE.
C

DOUBLE PRECISION SNtCNDNtXISCKARIGEOCMtYABCD
C
C TEST MODULUS
C

CM=SCK
Y=X
IH(SCK)31,4

1 D=DEXP(X)
A=L.DO/D
B=A+D
CN=2.DO/B
UN=CN
A=(D-A)/2.DO
SN=A*CN

C DEGENERATE CASE SCK=O GIVES RESULTS
C CN X = DN X = 1/COSH X
C SN X = TANH X

2 RETURN
C
C JACOBIS MODULUS TRANSFORMATION
C

3 D=1.DO-SCK
CM=-SCK/D
D=DSQRT(D)
Y=D*X

4 A=1.DO

DN=1.DO
DO 6 1=1,12
L=I
ARI(I)=A
CM=DSQRT(CM)
GEO(l)-CM
C=(A+CM)*5.DO
IF(DABS(A-CM)-1.O-9*A)7,7,5

5 CM=A*CM
6 A=C

C
C START BACKWARD RECURSION
L

7 Y=C*Y
SN=DSIN(Y)
CN=DCOS(Y)
IF(SN)8,13,8

8 A=CN/SN
C=A*C
DO 9 I=1,L
K=L-I+L
B=ARI(K)
A=C*A
C=DN*C
DN=(GEO(K)+A)/(B+A)

9 A=C/b
A=1.00/OSQRT(C*C+1.DO)
IF(SN)13,1111

10 SN=-A
GO TO 12

11 SN=A
12 CN=C*SN
13 IF(SCK)14,2,2
14 A=DN

DN=CN
CN=A
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SN=SN/D
RETURN
END

SUBROUTINE A371MS(N,A)
IMPLICIT REAL*8(A-H,O-Z)

250 FURMAT(1HO,20HMATRIX A IS SINGULAR)
DIMENSION A(11te1lBll)(1,C11),IXIMAX(11l)JXJMAXII1)
DIMENSION ICHK(11),JCHK(11),D(1111)
ISING=O
MC=N
DO 132 J=1,N
ICHK(J)=O

132 JCHK(Ji=O
145 DO 420 IXA=1,N

AMAX=0.0000
DO 160 I=1,N
IFIICHK(I)146,146,160

146 DO 158 J=1,N
IF(JCHK(Ji)147,147,158

147 IF(AMAX-DABSIA(IJ))1150,158,158
150 AMAX=DABS(A(I,J))

IMAX=I
JMAX=J

158 CONTINUE
160 CONTINUE

ICHK(IMAX)=1
JCHK(JMAX)=
IXIMAX(IXA)=IMAX
JXJMAX(IXA)=JMAX
IF(AMAX-1.OE-30)240,290,290

240 WRITE(6,250)
ISING=1
STOP

290 DUM=AIIMAX,JMAX)
00 310 J=L,N
IF(JCHK(J))304,304,310

304 A(IMAX,J)=A(IMAXJl/DUM
310 CONTINUE

DO 380 I=1,N
IF(I-IMAX)320,380,320

320 00 340 J=I,N
IF(JCHK(J))330,330,340

330 A(IJ)=AIJI-A(IJMAX)*A(IMAX,J)
340 CONTINUE
38J CONTINUE
420 CONTINUE

00 430 J=1,N
JT=JXJMAX(J)
00 430 I=1,N

430 D(I,JI=A(I,JT)
DO 440 I=1,N
DO 440 J=1,N

440 A(IIJ)=0.0
00 450 I=1,N

450 A(II)=1.0
DO 560 IXA=1,N
DO 452 I=1,N

452 B(I)=DII,IXA)
IMAX=IXIMAX(IXA)
JMAX=JXJMAX(IXA)
00 460 J=1,N

460 A(IMAX,Ji=A(IMAX,J)/8(IMAX)
DO 558 I=1,N
IFII-IMAX)470,558,470

470 DO 480 J=I,N
480 AII,J)=A(I,J)-B(I)*A(IMAXJ)
558 CONTINUE
560 CONTINUE
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UO 570 IXA=I,N
IMAX=IXIMAX(IXA)
JMAX=JXJMAX(IIXA)
IF(IMAX-JMAX)565,570,565

565 00 566 J=LN
DUM=A(IMAX,J)
A(IMAXJ)=A(JMAXJ)

566 A(JMAXJ)=DUM
DO 569 I=IXA,N
IF(IXIMAX(I)-JMAX)569,567#569

567 IXIMAX(I=IMAX
GO TO 570

569 CONTINUE
570 CONTINUE

RETURN
END

SUBROUTINE TRPOSE(AR,NM)
IMPLICIT REAL*8(A-HO-ZL
DIMENSION A(I),R(1)
IR=O
DO 13 I=lN
IJ=I-N
00 1) J=1,M
IJ=IJ+N
IR=IRIl

10 R(IR)=A(IJ)
RETURN
END

Listings of subroutines STATE, DOTPRO, TILDE, MATMUL and DATA appear in the listing of program DUMRA.
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